AMG2013

Summary Version
2.3

Purpose of Benchmark

Test single CPU performance and parallel scaling efficiency.

Characteristics of Benchmark

AMG is a parallel algebraic multigrid solver for linear systems arising from problems
on unstructured grids. The driver provided for this benchmark builds linear systems
for various 3D problems that are described in section D of the AMG2013. readme
file in the docs directory. The code is written in ISO standard C.

There are very large demands on main memory bandwidth. Parallelization is
accomplished using MPI as well as OpenMP directives. The solve phase is fully
threaded, however this is not the case for the setup phase, which is much more
complicated and contains a large amount of integer arithmetic and branches. The
primary FOM for CORAL includes only the solve phase.

There are two methods for creating the input matrix, its partitions, and
communication arrays that are used to drive the calculation. The first uses a global
partitioning with memory requirements that scale with the number of processors.
The second does not have this limitation and scales much better for large sizes,
where large means >~1K processors. Only the second method should be used for
large scale runs (-DHYPRE NO_ GLOBAL PARTITION).

See a more detailed description of the code in the docs/AMG201 3. readme file.

AMG requires a minimum of 1GB of main memory per MPI task.

Mechanics of Building Benchmark

AMG2013 uses a simple Makefile system for building the code. All compiler and
link options are set by modifying the Makefile.include file appropriately. Itis
recommended to use the options

-DHYPRE NO GLOBAL PARTITION -DHYPRE LONG LONG.



To build the code, after having modified the Makefile.include file
appropriately, type make in the top level amg2013 directory.
Other available targets are:

make clean (deletes .o files)
make veryclean (deletes .o files, libraries, and executables)

To configure the code to run with:

1. MPLadd—DTIMER_USE_MPI tOINCLUDE_CFLAGSleinthe
Makefile.include file and use a valid MPI.

2. MPIMﬂﬂlOpenMP,mki—DTIMER_USE_MPI —DHYPRE USING_ OPENMP to
INCLUDE CFLAGS and add vendor dependent compilation and linking flag
for OMP (e.g. —fopenmp)

3. To use the assumed partition (recommended for more one thousand
processes or more), add ~-DHYPRE NO_ GLOBAL PARTITION

4. To be able to solve problems that are larger than 231-1, add
-DHYPRE LONG LONG

Mechanics of Running Benchmark

All runs described below are to be done using the default problem (Problem 1 as
described in docs/amg2013. readme). The overall problem size is determined by
the command line parameters -r rx ry rz -P Px Py Pz , whererx, ry,
rz define the size per MPI process and Px, Py, Pz the process configuration.
There are two distribution types for this problem:

* -pooldist 0 willlead to each MPI task having a disjoint piece of each of
the 8 subdomains of the grid, leading to a larger amount of communication
and should only be used for tests on 1 node. Note that the total problem size
is 8 times as large as when using the same parameters with -pooldist 1:
rX*ry*rz*Px*Py*Pz.

* -pooldist 1 should be used for all larger runs, since it will generate a
problem partitioning more common in application codes. It requires the total

number of MPI tasks to be a multiple of 8. The total problem size here is
rX*ry*rz*Px*Py*Pz/8.

Example command line parameters to vary the size of the problem (using SLURM
notation. -n indicates number of MPI tasks, -N is the number of nodes). To define
the number of OpenMP threads per MPI task use setenv OMP_ NUM THREADS.

1. Small problem: single node and/or single CPU
srun =N 1 -n 1 amg2013 -pooldist 0 -r 6 6 6



srun -N 1 -n 8 amg2013 -pooldist 1 -r 12 12 12

2. Medium problem: (<1K node) job
srun -N 512 -n 2048 amg2013 -pooldist 1 \
-r 12 12 12 -P 16 8 8

3. Large problem (used for CORAL baseline Figure of Merit calculation on

BlueGene/Q):
srun -N 4096 -n 65536 amg2013 —-pooldist 1 \
-r 12 12 12 -P 32 16 16

4 . CORAL class problem:
To create a problem that is 2x the size as the Large problem above, choose
rx, ry, rz, Px, Py, Py, Pz, sothattheir productis 2x aslarge as
the product of the values chosen above, e. g.
-r 12 12 12 -P 32 32 16 createsa problem twice as large by using
twice as many MPI processes,
-r 12 24 12 -P 32 16 16 creates a problem twice as large by
doubling the size per process.

For an optional larger problem, which is 8x as large, replace -r 12 12 12 with -r
24 24 24in(3)above(and-r 6 6 6by-r 12 12 12in(1)above).

Figure of Merit (FOM):
There are 2 FOMs printed out at the end of each run:

1. system_size / setup_time
2. system_size * #iterations / solve time

For CORAL, it is sufficient to focus on (2) which is a measure of the performance of
one solve cycle and ignores the setup phase.

Note that the parameter ‘system_size’ used to compute the FOM is not the actual
system size of the problem and does not affect the actual AMG run. For consistency
across all runs it is important that it is used as set in the benchmark (512) and not
changed. The actual size used will be a multiple of 384, and is dependent on the
refinement factor and number of processes.

Benchmark Verification:

The benchmark delivers correct results if the ‘Final Relative Residual Norm’ printed
out at the end of each run is smaller than 1.e-06.



Additional Figure-of-Merit Data

The following is an additional FOM data collected for a larger version of the
AMG2013 problem (10,616,832 grid points per node). This is not the problem
being used for evaluation, but is provided as an additional data point for vendors
who want to provide benchmark results above-and-beyond those requested.

4096 65538 4 4.286E+10
4096 32768 8 4.076E+10
4096 16384 16 3.732E+10
4096 8162 32 3.286E+10
4096 4096 64 2.724E+10
512 8192 4 5.419E+09
512 4096 8 5.131E+09
512 2048 16 4.756E+09
512 1024 32 4.191E+09
512 512 64 3.433E+09




